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Fig. 5 Correlation for roughness Reynolds number of
three-dimensional shapes.

rough guide to the size of the tolerable roughness. Accurate
estimates require the specification of another nondimensional
group.

For a two-dimensional roughness, the criterion given in
Ref. 3 and llustrated in Figs. 2 and 3 is given by

826/R; = 1+ 1{(2.6:108/R.;) — 1}

For a three-dimensional roughness, the experimental results
of Tani et al., that are shown in Fig. 3 can be compared with
the smooth curve drawn by Tani’ through the experimental
results for the condition when transition is at the roughness
element, that is, the values corresponding to point A in Fig. 4.
The difference is small because, with an isolated roughness
element, transition moves forward very rapidly towards the
element. There is evidence that uik/v tends to a value of
about 830 as R.: approaches the value of 0.6-105 that cor-
responds to the lower stability limit of a laminar boundary
layer.® A suitable correlation is illustrated in Fig. 5 where
the straight line is given by

830 — (usk/v) = 275[(R.x — 0.6-10%)107¢]0-% (1)

Tf this relation is valid beyond the range of the experimental
results used, then with the roughness at the position of natural
transition where R,y = 2.6-108, the corresponding value of
wrk /v tends to 470.

The same results plotted in Fig. 2 fit the relation,

Ry = 1300 (R.;-107%)0.1 (2)

This equation is simpler than Eq. (1), it is more convenient
for design studies, as Ry is based upon the stream velocity,
and it agrees with Eq. (1) to within about ==29%, over the whole
range from the instability position to the natural transition
position. At the former position it gives an Ry, of 850, and at
the latter one, of 1500.

6. Comparison of Two-and Three-Dimensional Shapes

There is a difference in the effects of two- and three-dimen-
sional roughness shapes that is of practical interest when a
roughness element is close to the starting point of the bound-
ary layer. The present evidence suggests that a two-dimen-
sional cylindrical element can bring transition forward to it-
self even when the element is at the leading edge, for it is
able, by virtue of its drag, to add the necessary AR, to the
boundary layer as well as distorting the boundary-layer pro-
file towards instability conditions. By contrast, it seems
that an isolated roughness has a negligible effect upon the
momentum thickness of the boundary layer and so, as noted
in Ref. 5, it appears to become ineffective when E.s is at or
below the value corresponding to the lower limit of stability
of the laminar boundary layer.

References

1 Head, M. R., “Transition Due to Roughness,” Journal of the
Royal Aeronautical Society, Vol. 69, No. 653, May 1965, p. 344.

2 Dryden, H. L., “Review of Published Data on the Effect of
Roughness on Transition from Laminar to Turbulent Flow,”

ENGINEERING NOTES 173

Journal of the Royal Aeronautical Society, Vol. 20, No. 7, July1953,
p. 477.

$ Gibbings, J. C., “On Boundary-Layer Transition Wires,”
Current Paper 462, 1959, Aeronautical Research Council.

¢ Tani, 1., Komoda, H., and Iuchi, M., ‘“‘Some Experiments on
the Effect of an Isolated Roughness on Boundary-Layer Transi-
tion,”’ Rept. 357, 1962, Aeronautical Research Institute.

5 Klebanoff, P. S., Schubauer, G. B., and Tidstrom, K. D.,
“Measurements of the Effect of Two-Dimensional and Three-
dimensional Roughness Elements on Boundary-Layer Transi-
tion,” Journal of the Aeronautical Sciences, Vol. 22, No. 11, Nov.
1955, p. 803-804.

¢ Gazely, C., Jr., “Boundary-Layer Stability and Transition in
Subsonic and Supersonic Flow,” Journal of the Aeronautical Sci-
ences, Vol. 20, No. 1, Jan. 1953, p. 19.

7 Tani, I., “Effect of Two-Dimensional and Isolated Rough-
ness on Laminar Flow,” Boundary Layer and Flow Conlrol, edited
by G. V. Lachman, Pergamon, 1961, p. 637.

8 Schlichting, H., Boundary Layer Theory, 4th ed. McGraw-
Hill, New York, 1960, p. 397.

Thin Airfoil in Nonuniform
Parallel Streams

L. Tixg* anp C. H. Livt
New York University, Bronz, N. Y.

1. Introduction

HE small disturbance theory for two parallel streams was

initiated by von K4rmén.* The undisturbed streams with
velocity Uy and U, are separated by the streamline repre-
sented by the  axis. A thin airfoil represented by a single vor-
tex of strength I' was located as in the lower stream with
velocity U, at a distance d below the origin. According to the
small disturbance theory, the condition of matching pressure
U/, = Us'» and that of matching slope vy/U, = v"5/U,
are imposed along the undisturbed streamline, the z axis.
These boundary conditions are fulfilled by the introduction
of images.! The disturbance velocity potential for the lower
stream is

wi(z) = T/2xi) In(z + i) + MT/@xi) In(z — di) (1)

where z = z -+ @y and \; = (U2 — UR)/(U2 + Us?). The
second term represented the reflected image located at
z = di with strength \,I'. The disturbance velocity potential
for the upper stream is

we(z) = T/ (2mi) In(z + d7) 2)

It represents the “diffracted” disturbance with A =
2U, U/ (U2 + Uy). 1t should be noted that | N\ | is less than
unity and is equal to unity only in the two limiting cases:
1) Uy/U; = 0, \; = 1, and line y = 0 is a constant pressure
free streamline and 2) Uy/Uy— «, M = —1, and line
y = 0 represents a solid wall. Extensions of the method of
images to a flowfield of three parallel streams, i.e., two divid-
ing streamlines as shown in Fig. 1, have been made? for the
special case of jets (U, = Us = 0) and wakes U, = U; #
U?. In this Note, a system of images will be formulated
for the general case U, # U, # U; and the airfoil will be
represented by a vorticity distribution. The distribution will
be determined in a similar manner for an airfoil in a uniform
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Fig. 1 Thin airfoil in the center stream of three parallel
ones.

stream. Numerical results are obtained for the special case
when one of the dividing streamlines is a solid wall.

2. Analysis

Figure 1 shows three parallel streams with velocity U,,
Ui, and U;. For the analysis of the aerodynamic forces on
the airfoil, it is necessary only to construct the disturbance
velocity potential at the stream where the airfoil is located.

If a vortex is located at the origin and is in the center
stream, the upper dividing streamline is ¥y = a and the lower
streamline is y = —b. The reflected image with respect to
these two lines are ol at z = 2az and BT at z = —2bi with
a=(Uz?—U/(U?+ U and B = (U — U)/(U? +
Us?). The reflections of these two images with respect to the
opposite dividing streamlines are a8 at z = —2(a + b)t
and Bal' at z = 2(a 4+ b)i. By the method of successive
reflections, the disturbance potential for the central layer
due to a single vortex at the origin is

r
= (zﬂ_i){lnz + >

i=012 ..,

wy

(ef)ilaIn(e — 25kt — 2a3) +

BIn(z + 257 4 2b1) + B In(2* + 4(j + I)W)]} ®3)

where & = a + b.

A thin airfoil with chord length C lying in the middle stream
can be represented by a distribution of vortex with density
v(z) along the z axis from the origin to x = C, as shown in
Fig. 1. FEach vortex element y(x) dz will form a system of
images as described by Eq. (3). The distribution vy(z) will
then be determined by the linearized boundary condition
along the airfoil, i.e.,

v(#,0)/Us = m() — a €Y

Vg e

- ¥ ! | a=04c¢
i h=e 3 b=06¢c
ML, MOMENT ABOUT LEADING EOGE
AND LIFT OF AIRFOIL IN UNIFORM

“—

STREAM U,
10 \
-0 -08 -06 -04 -02 -’0 02 04 [+13 o8 10
- 3 2 5 12 1.0 112 715 w2 3 0 U

Y

Fig. 2 Change of lift and moment due to nonuniform
stream and wall effect.
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where « is the angle of attack, m(z) is the slope of the
mean camber line at zero angle of attack, and »(x, 0) is the
vertical velocity induced by the vortex distribution v(z) and
its system of images. From Eq. (3), it is obtained

1 rc¢ 1
U(SC,O) _'2_7;/0 {Z—CI),—*_

U alr — z')
i=0,§, . (o) I:(I — z)* + 4(jh + a)?

Bz — ') + 20B(x — ) ]} «
@—2)+4Gh + b2 | (x — 2)? + 4G + )#
vz (5)

Equations (4) and (5) form the integral equation for v(z)
subjected to the Kutta-Joukowski condition y(C) = 0. The
first term of the kernel is singular and is the same as that for
the classical problem of an airfoil in a uniform stream. By
following the classical approach,® new variables 8 and ¢ will
be introduced with z = 3C(1 — cos¢) and 2’ = 101 —
costl), and y(z) will be expressed as a series in o,

+

y(x) = 201{140 cotg +

M=12 ..

Aum sil]]l[<p} (6)

where Ao, Al, Az, .

are unknown constants. Equations (4)
and (5) become

Ay — A
g 0 M=§”. MCOSM<p$+
3
2 > 30 {Awu(k @)(eB)i =
M=012... ;=012 ... k=12
d+ 25 ducosMe (7)
M=12

do and dy are the cosine Fourler coefficients of the given
function m(x) — a. The terms in the curly brackets are the
terms in the classical problem. The three F’s are «, 8, and
af, respectively, for k = 1,2, 3. The functions, Jx(J, k, ¢)’s
are defined as

g = 1 = (cosf — cosg)sing . gd()
T xly (cosf — cosp)? + Yt s
and
Jo= [T (eos0 = cose) Sind oo 0 for =12,

wJo (0080 - COS(,O)2 + Y,’kz

where Yy = 4(jh + €:)/C with ¢, = a, e, = b, and e =
a + b. These integrals are carried out by contour integration
in Ref. 4. The result is

Jo = [2(R — R cosd + R? — cos268)/[R* + R — 2cos 28]
Ju = —RM cosMd for M = 1,2, ...
where
R = 22/{{2 4+ Z + (Z* + AY)V2 4 [Z 4 (27 + 4Y2)'2)ie)
0 < & = arccos(cosp{2/[2 + Z + (Z* + 4Y5))} )<~
Z = Y? — ginZp

and Y stands for Y. The left side of Eq. (7) can be resolved
into cosine Fourier series in ¢, and by equating the coefficients
on both sides of Eq. (7), a set of algebraic equations for the
unknown Ao, 4,, ... are obtained

E BordrL = 7Tdo, Z Byrdr = %

L=01, ... L=01 ..

for M =1,2,... (8
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with
3 «
Bur= 3 23 @BF [ Gk @) cosMede )
i=01 .., k=12

The coefficients By can be evaluated by numerical integra-
tion for a finite number of images. When (z) is represented
by a finite Fourier series, the algebraic equations for 4 can
be solved. A numerical program for the computations is pre-
sented in Ref. 4. Figure 2 shows the changes in lift and in
moment about leading edge of a flat plate due to nonuniform
streams. With 8 = —1, U;/U, = «, the lower dividing
streamline is a solid wall. When « decreases from 1 to 0
to —1, Us/U, increases from 0 to 1 to «, and both lift and
moment increase. At a = 0, the airfoil is in a wall jet of
thickness h = a + b = C. At a = 1, the airfoil is in a semi-
infinite uniform stream near the wall. At @ = —1, the airfoil
is in a uniform stream between two parallel walls.

If the airfoil is located in one of the outer streams, say the
upper stream, it is necessary to reconstruct the system of
images for a single vortex located at the origin and lying in
the upper stream. The locations of the two dividing stream-
lines will be ¥y = —a and y = —b, respectively, with
h=0b—a>0. The disturbances potential in the upper
stream is shown in Ref. 4 to be represented by the following
vortex system:

Wa

= (—ZET){IHZ — aln(z + 2ai) +
28 >

i=01 ...

(aB)i Infz — 2(5 + l)hi]} (10)

where a = 2U,U,/(U2 4 Uy?). With Eq. (3) replaced by
Eq. (10), the preceding procedure can be repeated to compute
the flowfield for an airfoil in one of the outer streams.

3. Concluding Remarks

By repeatedly applying the method of images across a
streamline dividing two parallel streams of unequal velocities,
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the linearized theory for a thin airfoil in three parallel streams
is completed. The same procedure can be extended to larger
numbers of parallel streams. The linearized theory for an
airfoil with jet flap can also be extended to include the effects
of nonuniform streams. Since the method of images applies
also to the doublets distributions, solutions for an airfoil with
finite thickness and camber in parallel streams can also be
constructed so long as the dividing streamlines are disturbed
slightly. These extensions will be reported later.

It should also be pointed out, when none of the dividing
streamlines represent a rigid wall, the resultant effect of the
vortex and the images will not cancel out at far upstream and
downstream, and the vertical displacement of the dividing
streamlines relative to the position at £ = 0 will be infinite.
‘When the vertical positions of the airfoil relative to the divid-
ing streamlines in its neighborhood (z ~ 0) are specified, the
linearized solution presented in this Note is valid locally
and is, in general, not uniformly valid at large distances. On
the other hand, when the vertical positions of the airfoil rela-
tive to the dividing streamlines far upstream are specified, the
present linearized solution is not immediately applicable since
a matching outer solution is not yet available. However, for
the special case when one of the dividing streamlines repre-
sents a rigid wall, the vertical displacement of all the stream-
lines will be small uniformly and the linearized solution is
uniformly valid with the classical exception of the neighbor-
hood of the leading edge. The numerical examples of this
Note belongs to this special case.
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